
 Welcome to GIMP Scripting 102B!

If you're reading this tutorial, I'm assuming you've experimented with GIMP Scripting

101 and GIMP Scripting 102A and feel comfortable enough getting around in the SFC/PB and

creating a simple Toolbox script. If not, please take the time to read it, or re-read, depending

on the situation, as I won't be covering those steps again. I'm sure most of you are ready to put

a script into action and aren't interested in delaying this any further by rehashing old news, so I

plan on working from the building blocks laid last time.

Again, I would like to thank saulgoode, ccbarr and PhotoComix for their review and suggestions.

Without these guys, the tutorial would be significantly lacking. Thanks again, everyone!

To recap here's the differences between the script types: Toolbox scripts are meant to work in a

stand-alone fashion....you don't have to have an image open to get them to work. The script

will create the image itself. Image Window scripts require an Image to be open and either

create a new image using the layers, channels, masks from the open image OR changes will be

made directly to the open image itself. It's really that simple. Can a Toolbox script and an

Image Window script do the same thing? Yes, they can. In fact, there are a number of default

GIMP scripts that are made in both forms. For example, if you go to the Toolbox Window and

look under the Xtns Menu > Logos and compare it to the Image Window under the Filters Menu >

Alpha to Logo > You'll see some similar names. The difference? The Toolbox Window scripts

create a new image with the desired result and the Image Window scripts operate on an open

image.

In this tutorial, you will learn:

How to locate the image ID of an existing, open image

Create a simple Image Window script

This tutorial is written using GIMP version 2.4.2. You may be able to follow along using older

versions of GIMP, but there have been improvements to the SFC/PB/and Scheme language which

might not produce the same results in older GIMP versions.

Depending on the web browser you're using, the images may be resized and appear of poor

quality. Firefox users can right-click on the image and choose View Image from the dropdown

menu to view it in full-size, best quality. I believe IE users can just click on the image to view it

in full-size, best quality, but I'm not sure about IE since I generally use Firefox.

Let's Begin!!

Here's the simple Toolbox script we created in GIMP Scripting 102A. We'll use this as a basis for

our Image Window script.

(define (script-fu-tutorial-image)

(let*

(

http://gimpchat.com/viewtopic.php?f=23&t=9252
http://gimpchat.com/viewtopic.php?f=23&t=9252
http://gimpchat.com/viewtopic.php?f=23&t=9621

(width 200)

(height 200)

(type RGB)

(name "Art's Layer")

(opacity 100)

(mode NORMAL-MODE)

(position -1)

(foreground '(50 123 171))

(fill-type FOREGROUND-FILL)

(image nil)

(layer nil)

(drawable nil)

)

(set! image (car (gimp-image-new width height type)))

(set! layer (car (gimp-layer-new image width height type name opacity mode)))

(gimp-image-add-layer image layer position)

(set! drawable (car (gimp-image-get-active-drawable image)))

(gimp-context-set-foreground foreground)

(gimp-drawable-fill drawable fill-type)

(gimp-display-new image)

)

)

(script-fu-register "script-fu-tutorial-image"

"<Toolbox>/Xtns/Tutorial Image Script"

"Create a new default GIMP image using my desired settings."

"Art Wade"

"Art Wade"

"January 2008"

""

)

Image Window Scripts

Writing an Image Window script really isn't any more difficult than a Toolbox script, but there

are some things we need to add to the script in order for it to work properly, plus there are

some additional things we'll want to add to improve their functionality. We won't need to cover

a lot of detail because we've built up a good foundation so far, but I will try to properly explain

the new items we're adding.

As previously discussed, an Image Window script works from the Image Window menu of an open

image, rather than from the Toolbox window. The script may create a completely new image or

modify the currently open image. Because of this, some of the criteria we specified in our first

script is already taken care of and doesn't need to be defined by the our new script. For

example, in order to create a new image from a Toolbox script, we needed to specify the

dimensions of the image and its type (RGB, grayscale, etc.) In an Image Window script, the

dimension/type of image are determined by open image itself. These values are still important

to us and we may want/need to use them in the scripts we create, but we don't need to

explicitly define them.

Additionally, let's take a look at the registry block of our previous script and discuss a few

differences that we must address in order to allow us to create an Image Window Script.

(script-fu-register

"script-fu-tutorial-image"

"<Toolbox>/Xtns/Tutorial Image Script"

"Create a new default GIMP image using my desired settings."

"Art Wade"

"Art Wade"

"January 2008"

""

)

Notice the two quote marks "" below the date of the script. The information that goes here tells

the Procedural Database what type of image(s) the script works on (RGB, RGBA, GRAY, GRAYA,

INDEXED, INDEXEDA). NOTE: The "A" in RGB"A", GRAY"A" and INDEXED"A" represents images of

that particular type that have an Alpha Channel in them. In a Toolbox script, we assigned the

type to one of the variables. However, on Image Window Scripts, we need to tell GIMP on what

type of images this script can work. You may say to yourself, "I want this script to work on ALL

image types." While that is a nice thought, it's not practical and, in some cases, not even

possible. Here's why, many of GIMP's filters work only on RGB images. If you tell GIMP that your

script can run on Grayscale or Indexed images that require the use of filters that only work on

RGB, your script won't work right. This is very important! So, it's up to you to decide how the

script is supposed to work.

So, let's say, you want your script to work on RGB and GRAYSCALE Images. Then, that particular

part of the script would look like this:

"RGB GRAY" The image types are listed and separated by a space.

If you wanted it to work on RGB RGBA GRAY GRAY images, you could type in this:

"RGB RGBA GRAY GRAYA" or you could simplify matters and type in this "RGB* GRAY*" using the

asterisk (*) as a wildcard indicating that it can also work on the corresponding image type with

an Alpha Channel.

If the image is to run on ALL image types, I suggest you use this "*", just an asterisk surrounded

by the quotes. If you've reviewed many Image Window scripts, you may have noticed that

sometimes there are just two quote marks with nothing in-between them. This is NOT

recommended for many reasons. I've noticed that it has a strange effect on scripts: they still run

just fine, but if you undo the script operations after you run them, you won't be able to do a

Filters Menu > Repeat (Ctrl+F) or Filters Menu > Reshow (Shift+Ctrl+F), you'll have to go back to

the exact menu location to run it again. That's not a difficult thing to do, but it can be

annoying, so I suggest you get in the habit of filling in the "type" section of the script

accordingly. There are other problems this might create, so make sure you put the appropriate

image type(s) between the quotes.

Now, we've got one more thing to cover before we move into the actual script. Remember

above when I said that the Toolbox script required 7 parameters in order to register it with the

PDB? Well, for an image script we need the same parameters, plus at least two more

parameters AND we need to add two corresponding variables to the area where we defined the

main function. The parameters for an Image Window script are as follows and need to be in the

listed in this order:

(script-fu-register "script-fu-tutorial-image-script"

"<Image>/Filters/Tutorial Image Script"

"Create a new default GIMP image using my desired settings."

"Art Wade"

"Art Wade"

"January 2008"

"RGB*"

SF-IMAGE "Image" 0

SF-DRAWABLE "Drawable" 0

)

Remember, we need a NEW function name to be registered with the PDB. So, this time, I've

called it script-fu-tutorial-image-script. Make sure you change the name in the define section as

well (I describe that below). Also, we've moved it from the <Toolbox> Window to the <Image>

Window and under the Filters Menu. You could put it under any menu, but for our purposes, this

is sufficient. We've told the script to run on RGB* images and we've added the required

parameters for it to work on an open image.

The SF-IMAGE and SF-DRAWABLE parameters need to be listed in the order shown and with the

number zero after each. The parameter labels "Image" and "Drawable" can probably be anything

you want, but I'd recommend you leave them as is. No need to complicate matters! However,

despite what you decide to call the parameter labels, SF-IMAGE/SF-DRAWABLE must always be

there in caps.

When we discussed defining the main function in GIMP Scripting 102a, I showed you the define

function could take the following form:

(define (script-fu-tutorial-image parameter1 parameter2...parameter x))

The parameters listed in blue are where we will add the parameters for SF-IMAGE and SF-

DRAWABLE. I've highlighted them below. The main function name has been updated to

correspond with the name assigned above in the register section and we've added two variables

for the SF-IMAGE/SF-DRAWABLE parameters.

(define (script-fu-tutorial-image-script image drawable)

NOTE: The "image" and "drawable" variables can be called anything you want, but I recommend

you keep them named something similar to the purpose they provide so you can easily keep

track of them later.

In essence, we've made the necessary changes to the script to allow it to run from an Open

Image. To do this, you could make these changes to the original Toolbox script, save it with a

new name, refresh your scripts, and then from an Open Image Window select: Filters > Tutorial

Image Script... and a new image with a single layer would appear. While this serves a purpose,

it's not what I really intended for our first Image Window script. What we want to do next is

create an Image Window script that will add a new layer to an Existing Image and fill that layer

with color.

The Image Window script would look like this is in its current (but very temporary form!):

(define (script-fu-tutorial-image-script image drawable)

(let* (

(width 200)

(height 200)

(type RGB)

(name "Art's Layer")

(opacity 100)

(mode NORMAL-MODE)

(position -1)

(foreground '(50 123 171))

(fill-type FOREGROUND-FILL)

(image nil)

(layer nil)

(drawable nil)

)

(set! image (car (gimp-image-new width height type)))

(set! layer (car (gimp-layer-new image width height type name opacity mode)))

(gimp-image-add-layer image layer position)

(set! drawable (car (gimp-image-get-active-drawable image)))

(gimp-context-set-foreground foreground)

(gimp-drawable-fill drawable fill-type)

(gimp-display-new image)

)

)

(script-fu-register "script-fu-tutorial-image-script"

"<Image>/Filters/Tutorial Image Script"

"Create a new default GIMP image using my desired settings."

"Art Wade"

"Art Wade"

"January 2008"

"RGB*"

SF-IMAGE "Image" 0

SF-DRAWABLE "Drawable" 0

)

Let's modify our script a bit to operate on an existing open image. But, before we do, let's cover

how to find the ID number of open image.

How to Locate an Existing Image's ID Number

In GIMP Scripting 102a, we created an image from scratch, letting GIMP assign the Image ID

number from within the SFC. In the script above, we used the same technique, but it's really not

necessary. GIMP already knows the ID of an open image. At some point, we'll need this

information as well. How can we obtain it? Simple. At the top of an open image window, you

see something that resembles this:

The number 5 is the Image ID, the number after the decimal place, in this case zero, is the View

number since you can have more than one view of the same image open at once.

Let's proceed!

As previously stated, we want our particular image script to add a new layer to an existing,

open image and fill it the new layer with color. Our current script just creates a brand new

image with a single, color-filled layer. In order to test things out, let's go back into the SFC/PB,

but this time have an image already open in GIMP. From the SFC, we'll actually witness the

changes to our open image. To keep things simple, let's use the new image created by one of

our scripts...doesn't really matter which script you use because they both do exactly the same

thing.

Let's think about the process for a minute...

If we are adding a drawable (a layer in this case) to an open image, we no longer need to use

the (set! image (car (gimp-image-new width height type))) function call to describe the image

dimensions/type (which ultimately sets the Image ID). That information already exists. Above, I

described above an easy way to get the Image ID....mine is 5. Take note of your Image ID, as it's

probably different from mine and you'll need it in the SFC. Also, since the type and image

dimensions are already defined by the open image, there's no need to explicity assign values to

them.

We know from the previous tutorials, that in order to add a layer to an image, the first thing we

need to do is decide on the layer's dimensions. (A layer does not need to be the same size as the

image). We also know that we need to specify the type, give it a name, assign the opacity and

the blend mode. Recall the function call:

(set! layer (car (gimp-layer-new image width height type name opacity mode)))

While this is still a valid command and you can certainly use it in the next script, I'd like to

introduce a new Procedure to you, which I'll do in a minute.

Lastly, we need to decide the where to place the image in the stack. Do you want it above the

current layer? Below it? Placed to the very top/bottom of a multi-layer image? Since we're

keeping things simple, let's place our image immediately above the active layer. Simple

enough....how do we tell GIMP what the active layer is? Glad you asked! I'll explain that right

now!

To get the active layer of an image, we simply use the following, substituting the image number

or putting in the appropriate image variable in place of "image" in bold below.

(gimp-image-get-active-layer image)

Why not try typing this into the SFC and see what value GIMP has assigned to your active layer.

You do have an image open, don't you?

My value was returned as "10". Keep this in mind for the time being.

Since we are NOT creating an image, the script will use the SF-IMAGE parameter and its

associated variable to represent the open image. So, if I were to call my variable that

represents the image - "image" then I wouldn't need to substitute anything at all here. But,

regardless of what you call the variable, GIMP will get look to see what the active layer is and

assign a value to it.

Now that we know what our active layer is, we can tell GIMP that we want to place our new

layer above it. But, before we do that, I'll show you a new way of "defining" a layer. As I stated

above, we previously defined a layer by using this command:

(set! layer (car (gimp-layer-new image width height type name opacity mode)))

While that is still a valid way to do it, I would like to show you another way. In reality, most of

us probably do this already when we use GIMP. If you look at the bottom of the layer dialog

window (the one that shows all your layers), you'll see a button that resembles two image

windows (it's the duplicate layer button). This button makes an exact copy of the active layer

and adds it to the image above your active layer. Well, that's what we're going to do here. To do

that we need to use the following command:

(gimp-layer-copy layer add-alpha)

Since we want to make a copy of the active layer, we substitute the value we obtained from the

(gimp-image-get-active-layer image) command and decide if the copy should have an alpha

channel (TRUE if we want one; FALSE if we don't). I want an alpha channel, so if I substitute the

values in the command, it will look like this:

(gimp-layer-copy 10 TRUE)

So, enter this command in the SFC, hit the ENTER key, and you should get the something like

the following:

Notice that while a value was returned for the new layer, but a new layer was not added to the

image. Why? Well, as was mentioned in the previous tutorials, we have to tell GIMP add it.

Which is straightforward enough. To do that, we use the same command as we used in our

Toolbox script:

(gimp-image-add-layer image layer position)

In the SFC, substitute the information you obtained for the image ID, the ID of the copied layer,

and the Position. GIMP uses a position of "-1" to place it above the active layer. My command

looks like this:

(gimp-image-add-layer 5 11 -1)

If you've done everything correctly, a new layer should appear above the previously active layer

and the new layer is now active.

A simple "copy" is nice, but let's change the color of the foreground and fill the layer with the

new color. To do that, we use the same commands as our simple Toolbox script as shown:

(gimp-context-set-foreground foreground)

(gimp-drawable-fill drawable fill-type)

Remember, the foreground color value is represented by a list containing an R G B value. So,

since I want my foreground color to be a "greenish" one, I'll go to make color selector and pick

the R G B values for the desired color and fill them in like this (remember the list must be

preceded by a single quote and in parenthesis):

(gimp-context-set-foreground '(9 107 39))

Enter your command into the SFC and if everything was entered correctly, your foreground color

swatch should change to your chosen color. Now, simply use the (gimp-drawable-fill drawable

fill-type) to fill the layer. Remember, a layer is a drawable so substitute your layer ID for

drawable.

(gimp-drawable-fill 11 FOREGROUND-FILL)

If you've done everything correctly, your new layer should now be filled with the desire color.

From the SFC standpoint, we've done all the steps we need to do to add a new layer to an open

image, place the new layer above the active layer, and fill the new layer with a new color.

Now, it's time to take those same commands and fit them into the "scripting protocol" and test

our new script.

The Revised Image Window Script

Here's the Image Window Script we prepared at the very beginning of the tutorial. We will

modify this script using the steps we just went through in the SFC to work on an open image. So,

if your previously created Image Window script isn't open, open it up in your text editor and let's

begin.

(define (script-fu-tutorial-image-script image drawable)

(let*

(

(width 200)

(height 200)

(type RGB)

(name "Art's Layer")

(opacity 100)

(mode NORMAL-MODE)

(position -1)

(foreground '(50 123 171))

(fill-type FOREGROUND-FILL)

(image nil)

(layer nil)

(drawable nil)

)

(set! image (car (gimp-image-new width height type)))

(set! layer (car (gimp-layer-new image width height type name opacity mode)))

(gimp-image-add-layer image layer position)

(set! drawable (car (gimp-image-get-active-drawable image)))

(gimp-context-set-foreground foreground)

(gimp-drawable-fill drawable fill-type)

(gimp-display-new image)

)

)

(script-fu-register "script-fu-tutorial-image-script"

"<Image>/Filters/Tutorial Image Script"

"Create a new default GIMP image using my desired settings."

"Art Wade"

"Art Wade"

"January 2008"

"RGB*

SF-IMAGE "Image" 0

SF-DRAWABLE "Drawable" 0

)

As you recall, the script above actually functions to create a new GIMP image. Since the script

works, but not in the fashion we want it to, we'll just change the appropriate parts to meet our

needs. In this case, we'll only change the "let* block" and some of the commands. The "define

function" and "register" blocks are completely fine in this case, other than the description,

which we'll modify later. I'll describe exactly what you need to change and why.

Let's start with the "let* block". The following variables were assigned:

(width 200)

(height 200)

(type RGB)

(name "Art's Layer")

(opacity 100)

(mode NORMAL-MODE)

(position -1)

(foreground '(50 123 171))

(fill-type FOREGROUND-FILL)

(image nil)

(layer nil)

(drawable nil)

For our new revised script, we no longer need the variables that describe the new layer: width,

height, type, name, and opacity. Why? Well, as we previously discussed, we're simply going to

make a copy of the active layer as the basis for our new layer. GIMP already knows those values,

so they are unnecessary. Additionally, we no longer need the variables image, layer, and

drawable. Why? Remember, the image and drawable variables are already assigned through the

SF-IMAGE and SF-DRAWABLE parameters. The layer variable was used to as the "placeholder" for

the information describing the dimension and type of the new layer. Since we're making a copy

of layer, we don't need that information.

But, we DO need to add a couple of new variables so that GIMP can process them in the script.

Recall from the steps we used in the SFC above, that we need to determine the active layer and

make a copy of the active layer. The commands in the SFC is simple enough, but we need to

assign that values that are returned from those commands to "something". So, we'll create a

variable for active layer, for simplicity sake, we'll call it "active-layer". Likewise, now that we

have a variable to store the value of the active layer, we need a variable to store the value of

the copy of the active layer, we'll call it "copy-layer". Simple enough. We now have all the

variables we need to completely revise our "let* block". The revised "let* block" should look like

so:

(let*

(

(position -1)

(foreground '(9 107 39))

(fill-type FOREGROUND-FILL)

(active-layer nil)

(copy-layer nil)

)

Here, we've defined the position (for placement of the new layer), the new foreground color to

fill the layer with, the fill type, and told GIMP we want to use active-layer and copy-layer in our

script. Those two will be defined in just a minute.

The commands from our previous script look like this:

(set! image (car (gimp-image-new width height type)))

(set! layer (car (gimp-layer-new image width height type name opacity mode)))

(gimp-image-add-layer image layer position)

(set! drawable (car (gimp-image-get-active-drawable image)))

(gimp-context-set-foreground foreground)

(gimp-drawable-fill drawable fill-type)

(gimp-display-new image)

In light of our new information we placed in the "let* block", we need to modify it accordingly.

For example, we removed the image, layer and drawable variables from the "let* block",

therefore we need to delete the following from ours, as they are no longer needed:

(set! image (car (gimp-image-new width height type)))

(set! layer (car (gimp-layer-new image width height type name opacity mode)))

(set! drawable (car (gimp-image-get-active-drawable image)))

But, we need to assign values to active-layer and copy-layer using the "set!" function. Recall

from above that the command to determine the active layer of an image is: (gimp-image-get-

active-layer image). Since, we've set the variable for the image as image in the register section

of the script, we can simply "set" the active-layer variable using this format:

(set! active-layer (car (gimp-image-get-active-layer image)))

Likewise, to make a copy of the active layer in the SFC, we used this command: (gimp-layer-

copy layer add-alpha), with "layer" being the layer we are making the copy of. Since we are

making a copy of the active-layer we substitute the active-layer variable in place of "layer", like

this: (gimp-layer-copy active-layer TRUE) Remember, TRUE is giving the copy an alpha channel.

Therefore, to "set" our copy-layer variable, we use this format:

(set! copy-layer (car (gimp-layer-copy active-layer TRUE)))

We still need to add the new layer to the image, but we need to modify the command from this:

(gimp-image-add-layer image layer position)

to this:

(gimp-image-add-layer image copy-layer position)

The copy-layer is what we're adding to our image, not layer - the variable layer no longer exists.

Since we've already assigned the position variable to -1 in the "let* block", GIMP knows to place

the copy-layer above the active layer.

The command to change the foreground color - (gimp-context-set-foreground foreground) - is

still valid and no changes need to be made to it. However, we do need to change the "fill"

command - (gimp-drawable-fill drawable fill-type) - because the variable drawable still exists

(remember, we identified the drawable in the register section of the script), we don't want to

fill the drawable with the new color. We want to fill the copy-layer with the foreground color.

So, our revised "fill" command will look like so:

(gimp-drawable-fill copy-layer fill-type)

and since the fill-type variable was defined in the "let* block" we don't need to change

anything.

We need to add a brand new command. When working on an open image, GIMP needs to be told

to update the display (kinda like a "refresh" option, if you will). To do that we add the

command:

(gimp-displays-flush)

This command requires no variables. It simply tells GIMP to update the display.

The last thing to do is to update the description of the script, which is found in the register

section. The current description looks like so:

"Create a new default GIMP image using my desired settings." I suggest you make change it to

this:

"Create a copy of the active layer, add it above the active layer, and fill it with color."

We are now finished with our revised script. Here's what it should look like:

(define (script-fu-tutorial-image-script image drawable)

(let*

(

(position -1)

(foreground '(9 107 39))

(fill-type FOREGROUND-FILL)

(active-layer nil)

(copy-layer nil)

)

(set! active-layer (car (gimp-image-get-active-layer image)))

(set! copy-layer (car (gimp-layer-copy active-layer TRUE)))

(gimp-image-add-layer image copy-layer position)

(gimp-context-set-foreground foreground)

(gimp-drawable-fill copy-layer fill-type)

(gimp-displays-flush)

)

)

(script-fu-register "script-fu-tutorial-image-script"

"<Image>/Filters/Tutorial Image Script"

"Create a copy of the active layer, add it above the active layer, and fill it with color."

"Art Wade"

"Art Wade"

"January 2008"

"RGB*"

SF-IMAGE "Image" 0

SF-DRAWABLE "Drawable" 0

)

Now, save your new script. No need to do a Save As... because the goal was to revise the

previously created image script. Refresh your scripts and run it. Remember, it's found under

Filters > Tutorial Image Script. Hopefully, the script will run fine and you'll see a new layer

added above the active layer. If not, go back through the script and make the necessary

changes.

Well, this concludes this portion of the tutorial! In the next tutorial, we'll learn how to add

"User Input" functionality to our scripts.

